Calculating Degrees of Freedom in Multivariate Local Polynomial Regression
نویسندگان
چکیده
منابع مشابه
Multivariate Local Polynomial Regression with Application to Shenzhen Component Index
This study attempts to characterize and predict stock index series in Shenzhen stock market using the concepts of multivariate local polynomial regression. Based on nonlinearity and chaos of the stock index time series, multivariate local polynomial prediction methods and univariate local polynomial prediction method, all of which use the concept of phase space reconstruction according to Taken...
متن کاملMultivariate Regression Estimation : Local Polynomial Fitting for Time Series
We consider the estimation of the multivariate regression function m (x 1 , . . . ,xd) = E [ψ (Yd) | X 1 = x 1 , . . . ,Xd = xd], and its partial derivatives, for stationary random processes {Yi ,Xi} using local higher-order polynomial fitting. Particular cases of ψ yield estimation of the conditional mean, conditional moments and conditional distributions. Joint asymptotic normality is establi...
متن کاملDiversity and degrees of freedom in regression ensembles
Ensemble methods are a cornerstone of modern machine learning. The performance of an ensemble depends crucially upon the level of diversity between its constituent learners. This paper establishes a connection between diversity and degrees of freedom (i.e. the capacity of the model), showing that diversity may be viewed as a form of inverse regularisation. This is achieved by focusing on a prev...
متن کاملOn the Degrees of Freedom in Shape-restricted Regression
For the problem of estimating a regression function, μ say, subject to shape constraints, like monotonicity or convexity, it is argued that the divergence of the maximum likelihood estimator provides a useful measure of the effective dimension of the model. Inequalities are derived for the expected mean squared error of the maximum likelihood estimator and the expected residual sum of squares. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2019
ISSN: 1556-5068
DOI: 10.2139/ssrn.3812825